笔记|葡萄园管理 9

Winoter
·
(修改过)
·
IPFS

从简单的角度来看,可能认为增加叶面积应当可以直接提高葡萄藤产生成熟果实的能力。然而,葡萄藤是一种极为复杂且具有高度适应性的植物,而且一年生长季的结果能力,在很大程度上是在前一年就已决定,下一季的大部分花序会在当前季节开花前后约四周的时间内启动。因此,与其他多年生作物 Perennial crops 一样,上一年的生长条件对当前季节的产量起着外部限制的作用。这种现象在气候较冷的地区尤为明显,因为这些地区季节变化幅度通常较大。另外,养分的可利用性与植株的健康状况(以及储存养分的能力)也会显著影响下一年的生长和产量。

产量与质量之间存在简单关联的另一个问题,是葡萄藤每年可能会多次萌发新梢 Shoot sets,主芽和在较小程度上的副梢都可能形成花和果实。因此,一些品种可能会连续产生两轮果实,其形成时间可能相隔4到6周,这不仅会延迟果实的成熟时间,还会因为采收时果实成熟度差异过大导致果实质量下降。第二轮(或第三轮)果实的形成可能是由于过度修剪,特别是在肥沃湿润的土壤上。相反,在贫瘠干燥土壤上进行较重修剪,可以将光合作用的能力集中用于成熟较少的果实上。

一些总结:

• 葡萄藤今年的结果潜力其实是在前一年就已基本决定

• 特别是在冷凉气候地区,前一年的环境条件对当年产量影响显著

• 植株健康、养分储存等因素会持续影响下一季的生长与果实发育

• 简单认为“低产=高质”并不准确

• 一些品种可能会多次开花结果,影响果实成熟一致性和质量

• 过度修剪或不适当的管理可能导致不均匀成熟




图4.4展示了三种不同整枝系统如何影响产量与百分比糖度 ºBrix(3年平均值)之间的关系。其中 1. x轴:产量(t/ha,吨/公顷);2. y轴:糖度(°Brix,可溶性固形物浓度)(摘自 Intrieri 和 Poni,1995,经授权转载)

一、三种整枝系统各自的回归方程与r² 的基础数据:

•GDC:Geneva Double Curtain 日内瓦双帘式整枝系统

•Hedgerow:篱笆式整枝系统

•Gobelet:杯形(自由灌木状)整枝系统

--------------------

- 整枝系统:GDC

回归方程:y = -0.49x + 31.7

r² :0.81

产量每增加1吨/公顷,糖度降低0.49 °Brix

- 整枝系统:Hedgerow

回归方程:y = -0.35x + 24.6

r² :0.95

相关性最强,解释度最高

- 整枝系统:Gobelet

回归方程:y = -0.36x + 25.8

r² :0.64

相关性较弱,波动性较大

二、对图4.4 的分析:

1. 产量与糖度呈负相关关系:

• 三条线性回归线的斜率均为负,说明:随着产量的增加,糖度 °Brix下降。

• 即:单位面积果实越多,单果糖分积累能力越弱。

2. 不同整枝系统影响不同:

• 整枝系统:GDC

特点:产量最高

糖度下降速度:糖度下降最快(斜率最大)

相关性强度(r²):中等相关(0.81)

• 整枝系统:Hedgerow

特点:较平衡

糖度下降速度:糖度下降最慢

相关性强度(r²):相关性最强(0.95)

• 整枝系统:Gobelet

特点:自然开放式

糖度下降速度:波动较大

相关性强度(r²):相关性最弱(0.64)

3. Hedgerow系统在糖度控制方面可能更优:

• Hedgerow 虽然产量不高,但糖度下降速度最慢,且拟合度最高,表明这种整枝系统下的葡萄成熟度更稳定,品质或更可控。

图标的总结:

• 图表直观体现了「产量越高,糖度越低」的普遍趋势

• 整枝系统显著影响葡萄糖分积累效率与一致性

• 在追求高质量果实(高糖度)时,应权衡产量与整枝方式

• 不能简单地认为增加叶面积或产量就等于更好质量的葡萄


From:

Management of Vine Growth

A simplistic view would suggest that an increased leaf area should directly correlate into an increased ability to produce additional fully ripened fruit. However, the grapevine is an uncommonly complex and adaptive plant. The fruit-bearing capacity of a year’s growth is largely defined in the previous year. Thus, most of the flower clusters for the next year are initiated within a 4-week period, bracketing the blooming of the current season’s flowers. Thus, as typical with other perennial crops, conditions in the previous year place outer limits on the current season’s crop. This is particularly marked in cool-climatic regions, where seasonal variations are often pronounced. Nutrient availability and growth may also be markedly influenced by vine health(and ability to store nutrients) during the previous year.

Another problem with simple yield/quality associations is the potential for the vine to produce several shoot sets per year. Both the primary and, to a lesser extent lateral shoots, are potential sources of flowers and fruit. Thus, some cultivars may sequentially produce two sets of fruit, whose inceptions may be separated by 4–6 weeks. This not only retards ripening of the developing fruit, but also leads to an additional source of poor fruit quality – a wide range of maturity at harvest. Induction of a second (or third) crop can be caused by overly zealous pruning, especially on rich moist soils. In contrast, heavy pruning of vines grown on comparatively nutrient-poor dry soils can direct photosynthetic capacity to fully ripen a restricted fruit load. Figure 4.4 illustrates how different training systems affect the yield/ºBrix ratio. There can also be marked variation within a cultivar (Fig. 4.5), site, or vintage (Plan et al., 1976). Sensory quality may actually decrease with reduced yield, by enhancing the presence of undesirable flavorants (Fig. 4.6) and diminishing varietal aroma (Chapman et al., 2004a). Thus, a universal relationship between vine yield and grape (wine) quality does not exist.


CC BY-NC-ND 4.0 授权

喜欢我的作品吗?别忘了给予支持与赞赏,让我知道在创作的路上有你陪伴,一起延续这份热忱!

Winoter微信公众号:winotery 妙有无心
  • 来自作者
  • 相关推荐

笔记|葡萄园管理 5

笔记|葡萄园管理 3

笔记|葡萄园管理2